
Bayesian K-Means as a “Maximization-Expectation” Algorithm

Max Welling ∗ Kenichi Kurihara †

Abstract

We introduce a new class of “maximization expectation”

(ME) algorithms where we maximize over hidden variables

but marginalize over random parameters. This reverses the

roles of expectation and maximization in the classical EM

algorithm. In the context of clustering, we argue that the

hard assignments from the maximization phase open the

door to very fast implementations based on data-structures

such as kd-trees and conga-lines. The marginalization over

parameters ensures that we retain the ability to select the

model structure. As an important example we discuss

a top-down “Bayesian k-means” algorithm and a bottom-

up agglomerative clustering algorithm. In experiments we

compare this algorithm against a number of alternative

algorithms that have recently appeared in the literature.

1 Introduction

K-means is undoubtedly one of the workhorses of ma-
chine learning. Faced with the exponential growth of
data, researchers have recently started to study strate-
gies to speed up k-means and related clustering al-
gorithms. Most notably, methods based on kd-trees
[7, 6, 11, 10] have been very successful in achieving or-
ders of magnitude improved efficiency.

Another topic of intense study has been to device
methods that automatically determine the number of
clusters from the data [7, 4]. One of the most promising
algorithms in this respect is based on the “variational
Bayesian” (VB) paradigm [1, 3]. Here distributions over
cluster assignments and distributions over stochastic
parameters are alternatingly estimated in an EM-like
fashion. Unfortunately, it is difficult to apply the speed-
up tricks mentioned above to this algorithm, at least
without introducing approximations.

One of the main goals in this paper is to propose
a modification of VB-clustering that combines model
selection with fast implementations. The technique we
propose is an instance of a new class of “ME algorithms”
that reverses the roles of expectation and maximization
in the EM algorithm. Alternatively, it can be viewed as

∗Dept. of Computer Science University of California Irvine,
CA, USA

†Dept. of Computer Science Tokyo Institute of Technology,
Japan

a special case of the VB framework where expectation
over hidden variables is replaced with maximization.

In the context of clustering we discuss a ME al-
gorithm that is very similar to k-means but uses
a full covariance and an upgraded “distance” to
penalize overly complex models. We also de-
rive an alternative agglomerative clustering algorithm.
Both algorithms can be implemented efficiently us-
ing kd-trees and conga-lines respectively. Experi-
mentally, we see no performance drops relative to
VB but at the same time we demonstrate significant
speedup factors. All software is publicly available at
http://mi.cs.titech.ac.jp/kurihara/bkm.html

2 Maximization-Expectation Algorithms

Consider a probabilistic model, p(x, z, θ), where x and z
are observed and a hidden random variables , and θ is a
set of parameters (which are assumed random as well).
Given a dataset D, a typical task in machine learning is
to compute posterior or marginal probabilities such as
p(z|D), p(θ|D) or p(D). It is not untypical that exact
expressions for these quantities can not be derived and
approximate methods become necessary. We will now
review a number of approaches based on alternating
model estimation.

A standard approach is to represent the distribution
using samples like a Gibbs sampler. Instead of sam-
pling, one can fit factorized variational distributions to
the exact distribution, i.e. p(θ, z|D) ≈ q(θ)q(z). This
“variational Bayesian” (VB) approximation [1, 3] alter-
natingly estimates these distributions by minimizing the
KL-divergence, KL[q(θ)q(z)||p(θ, z|D)] between the ap-
proximation and the exact distribution. This results in
the updates,

q(θ) ∝ exp(E[log p(θ, z,D)]q(z))

↔ q(z) ∝ exp(E[log p(θ, z,D)]q(θ)).

Instead of maintaining a distribution over parameters,
one could decide to estimate a MAP value for θ∗

by the expectation-maximization algorithm (EM) to
alternatingly compute,

θ∗ = argmax
θ

E[log(p(θ, z,D)]q(z) ↔ q(z) = p(z|θ∗,D).

This turns out to be a special case of the VB formalism

Figure 1: Four faces of alternating model learning: EE, EM,
ME and MM algorithms

where q(θ) = δ(θ, θ∗). Finally, one can also choose
to use point-estimates for both θ and z, which is
known as “iterative conditional modes” (ICM). In this
case we iteratively maximize the posterior distributions,
p(θ|z,D) and p(z|θ,D) which is equivalent to,

θ∗ = argmax
θ

p(z∗, θ,D) ↔ z∗ = argmax
z

p(z, θ∗,D).

In figure 1 we have depicted the 4 algorithms discussed
so far, Gibbs sampling, VB, EM, and ICM. A par-
ticular choice among these methods often represents
a trade-off between computational efficiency and ac-
curacy, where ICM is the most efficient and VB and
Gibbs sampling the least efficient of these methods. On
the other hand, VB has the potential of model selec-
tion. Viewing VB as an extension of EM, we could clas-
sify VB as an “expectation-expectation” (EE) algorithm
while ICM should be interpreted as a “maximization-
maximization” (MM) algorithm. This paper is about
a new class of algorithms which we call “maximization-
expectation” algorithms where we maximize over hidden
variables but take expectations over parameters,

q(θ) = p(θ|z∗,D) ↔ z∗ = argmax
z

E[log(p(θ, z,D)]q(θ).

We can interpret the ME algorithm as an approximation
of the VB formalism where we use q(z) = δ(z, z∗). The
main motivation behind this idea is to propose a class
of algorithms that is computationally efficient on the
one hand but has the necessary ingredients for model
selection on the other. In particular for the clustering
example under consideration, we will show that efficient
data-structures such as kd-trees can be employed with
relative ease. Although this paper focuses on the
“Bayesian K-Means” algorithm we like to stress that
our ideas are rather more general than this.

3 The Hard Assignment Approximation

Let xn, {n = 1, ..., N} be a vector of IID continuous-
valued observations in D dimensions. For each data-
case we define a cluster assignment variable, zn ∈

[1, ...K]. We assume that the data has been generated
following a Gaussian a mixture of model,

p(x, z) =

∫

dµdΩdα N (x|z,µ,Ω) M(z|α)(3.1)

D(α|φ0) N (µ|m0, ξ0Ω) W(Ω|η0, B0).

Here, N (·) is a normal distribution, M(·) a multi-
nomial (discrete) distribution, D(·) a Dirichlet distri-
bution and W(·) a Wishart distribution. The pri-
ors depend on some (non-random) hyper-parameters,
m0, φ0, ξ0, η0, B0 .

We restrict the full posterior distribution to have
a factorized form, p(z,θ|D) ≈ q(θ) δ(z, z∗) i.e. we
maintain a distribution over parameters, but settle for a
point-estimate of the assignment variables. Minimizing
the KL-divergence between this approximate posterior
and the exact posterior, KL[q(θ)δ(z, z∗)||p(z,θ|D)],
over q(θ) we find,

q(µ,Ω,α) = D(α|{φc})
K
∏

c=1

N (µc|mc, ξcΩc) W(Ωc|ηc, Bc)

where

ξc = ξ0 +Nc mc =
Ncx̄c + ξ0m0

ξc
(3.2)

ηc = η0 +Nc φc = φ0 +Nc

Bc = B0 +NcSc +
Ncξ0

ξc
(x̄c −m0)(x̄c −m0)

T

and where Nc denotes the number of data-cases in
cluster c, x̄c is the sample mean of cluster c, and Sc

is its sample covariance.
The main simplification that has resulted from the

approximation is that this distribution now factorizes
over the clusters. Using this, we derive the following
bound on the log evidence (or “free energy”)1,

F(z,K) =

K
∑

c=1

[

DNc

2
logπ +

ηc

2
log det(Bc)(3.3)

−
η0

2
log det(B0) +

1

2
log

ξc

ξ0
− log

ΓD(ηc

2)

ΓD(η0

2)

− log
Γ(φc)

Γ(φ0)
+

1

K
log

Γ(N +Kφ0)

Γ(Kφ0)

]

where ΓD(x) = π
D(D−1)

4

∏D
i=1 Γ(x + 1−i

2) and Γ(·) the
Gamma function. Our task is to minimize Eqn.3.3
jointly over assignment variables zn, n = 1..N and K,
the number of clusters.

1F(z,K) = −E[p(D, θ, z′)]q(θ)δ(z′,z) − H[q(θ)] = − log p(D) +
KL[q(θ)δ(z′, z)||p(θ, z′|D)] ≥ − log p(D)

4 “Bayesian K-Means” and “Agglomerative

Bayesian Clustering”

In this paper we study two approaches to minimizing
the cost Eqn.3.3, a Bayesian variant of k-means (BKM)
and an agglomerative Bayesian clustering algorithm.

From Eqn.2.1 we see that the ME algorithm itera-
tively maximizes E[log(p(θ, z,D)]q(θ), where p(θ, z,D)
can be derived from Eqn.3.1 and q(θ) is given by
Eqn.3.2. This leads (after some algebra) to the following
iterative “labelling cost”,

CBKM =
∑

n

γzn
(xn) with(4.4)

γzn
(xn) =

ηzn

2
(xn −mzn

)TB−1
zn

(xn −mzn
)(4.5)

+
1

2
log det(Bzn

) +
D

2ξzn

−
1

2

D
∑

d=1

ψ

(

ηzn
+ 1 − d

2

)

− ψ(φzn
),

where ψ(x) = ∂ log Γ(x)
∂x

is the digamma function. We
recognize γzn

(xn) as the Mahalanobis distance plus
some constant correction term. BKM thus alternates
updating assignment variables zn to minimize CBKM and
recalculating the quantities in Eqn.3.2 similar to the
classical k-means algorithm. To search over different
numbers of clusters we need to introduce cluster split
and merge operations2.

An alternative approach to minimize Eqn.3.3 is
bottom-up agglomerative clustering. At first, assign a
separate cluster to every data-case. At each iteration
we search for the best pair of clusters to merge which
maximally decrease the objective. This Bayesian ag-
glomerative algorithm stops when it has inferred the
number of clusters in the data (see also [5]).

To improve computational efficiency we adapted
methods based on kd-trees [7, 6]. In particular, we
need to compute the minimal and maximal distance be-
tween a cluster and a hyper-rectangle, where “distance”
is defined by Eqn.4.5. While the minimal distance is a
standard constrained QP, the maximal distance must be
replaced by the following bound to maintain tractabil-
ity: replace B−1

c in Eqn.4.5 by λmax
c I with λmax

c the
largest eigenvalue of B−1

c . Using this, the problem
becomes axis aligned and can be separately solved in
each dimension. For agglomerative clustering we have
used “Conga-Lines” [2] to reduce time complexity from

2We have followed the approach taken in the SMEM algorithm
[9]. Our criteria to rank clusters are also the same as [9]. When we
split, we initialize the new clusters using the heuristic described
in [4].

Top-Down Bayesian K-Means

1 Initialize:

1i Set hyper-parameters {B0, ξ0, η0, φ0,m0}.
1ii Assign all data-cases to a single cluster {zn} = 1.
2 Repeat split operations until no more improvement is possible:

2i Use heuristic to rank clusters for splitting.
2ii Split highest ranked cluster.
2iii Run Bayesian k-means updates until convergence:

2iiia Update quantities {Bc, ξc, ηc, φc,mc} using Eqn.3.2.
2iiib Update assignment variables using Eqn.4.5.
2iv Accept or Reject Split

2iva If the free energy decreased: accept split and goto 2i.
2ivb Otherwise: reject split, remove candidate from list and

goto 2ii.
3 Merge two clusters into one cluster:

3i Use heuristic to rank pairs of clusters for merging.
3ii Merge highest ranked cluster.
3iii Run Bayesian k-means updates until convergence (see 2iia

& 2iib above)
3iv Accept or Reject Merge

3iva If the free energy decreased: accept merge and goto 2.
3ivb Otherwise: reject merge, remove candidate from list and

goto 3ii.

Bottom-Up Agglomerative Clustering

1 Initialize:

1i Set hyper-parameters {B0, ξ0, η0, φ0,m0}.
1ii Assign all data-cases to a separate cluster {zn = n}.
2 Repeat merge operations until no more improvement is possi-

ble:

2i Update quantities {Bc, ξc, ηc, φc,mc} using Eqn.3.2.
2ii Find the pair of clusters that generates the largest decrease

in the free energy in Eqn.3.3.
2iii Merge closest pair by assigning their data-cases to a single

cluster and goto 2i.

O(N3) to O(N2 log(N)). We emphasize that the ap-
plication of these data-structures is restricted to hard-
clustering algorithms if we do not allow approximations.

5 Experimental Results

In our first experiment we compared Bayesian K-means
(BKM) with G-means [4] , K-means+BIC [8] , mixture
of Gaussians + BIC and variational Bayesian learn-
ing for mixtures of Gaussians (VBMG) [1, 3]. K-
means+BIC, mixtures of Gaussians+BIC and VBMG
use the same split and merge strategy as BKM. These al-
gorithms were tested on a number of synthetic datasets
which sampled from 10 Gaussians (i.e. K=10). They
were generated similarly to [4]3. Table 1 shows the
results of the experiments. It should come as no

3For each synthetic dataset, we sampled K centroids and
stds. such that no two clusters are closer than τ ×
(the sum of two stds.) / 2. After that, we multiplied the data
within each cluster with a random matrix to give them full co-
variance structure.

surprise that BKM, VBMG and MoG+BIC outper-
form G-means and k-means+BIC since the latter as-
sume isotropic covariance. Between BKM, VBMG and
MoG+BIC it seems hard to discern significant differ-
ence in performance. Note however that there are no
speedup techniques available for VBMG and only an
approximate speedup technique for MoG+BIC [6]. In
contrast, the kd-tree speedup is exact.

Next, we evaluated agglomerative Bayesian cluster-
ing (ABC) against the following traditional agglomer-
ative clustering methods: single, complete and average
linkages. We ran these algorithms on a number of hand-
written digits datasets: Pendigits, CEDAR dataset,
MNIST dataset and “3 digits” dataset4. Following [4],
we applied a random projection to MNIST to reduce the
dimension to 50. For each dataset, we created 10 new
datasets consisting of 100 randomly chosen data-cases.
Dendrograms were evauated using dendrogram purity5.
Table 2 shows the results. On CEDAR, MNIST and 3
digits, ABC built the highest purity dendrograms.

Finally, we compared the naive BKM implemen-
tation against efficient implementations using kd-trees
and Conga-Lines. For the kd-tree experiment we var-
ied one parameter at a time and used default values
of N = 20000, D = 2, τ = 3 and K = 5 to sam-
ple data. A node in a kd-tree is declared a leaf if the
number of data-cases in the node is less than 1000 (the
remaining points are treated individually). In the ex-
periments with Conga-Lines, we vary N and use D = 2,
τ = 3 and K = 10. Figures 2 show the speedup fac-
tors. Speedup increases very fast with N (factor of 67
at N = 80000), moderately fast with τ and decreases
surprisingly slow with dimension (factor of 3.6 in 256
dimensions at N = 20000). BKM using Conga-Lines is
only slightly faster than the naive implementation due
to large overhead but this clearly becomes more signifi-
cant with growing N .

6 Conclusion

The contributions of this paper are twofold. Firstly a
new class of algorithms is introduced that reverses the
roles of “expectation” and “maximization” in the tra-
ditional EM algorithm. This combines the potential for

4These datasets have 10 true classes (digits 0-9). Pendigits,
CEDAR and MNIST have 7984, 7000 and 60000 data-cases and
16, 64 and 784 dimensions respectively. “3 digits” is a dataset
which only contains the “0”s, “2”s and “4”s from MNIST.

5When a dendrogram and all correct labels are given, pick
uniformly at random two leaves which have the same label c
and find the smallest subtree containing the two leaves. The
dendrogram purity is the expected value of (#leaves with label c
in subtree)/(#leaves in the subtree). For each class, if all leaves in
the class are contained in a pure subtree, the dendrogram purity
is 1.

model selection with fast implementations . Secondly,
we have implemented and studied one possible applica-
tion of this idea in the context of clustering. Explicit
algorithms were derived for bottom-up agglomerative
Bayesian clustering and top-down Bayesian K-means
clustering and experimentally tested.

Although we have explored these ideas in the sim-
plest possible context, namely clustering, the proposed
techniques seem to readily generalize to more complex
models such as HMMs. Whether the efficiency gains
can also be achieved in this setting remains to be inves-
tigated.

Acknowledgments

We are grateful to the authors of [6] and [4] for sharing
their code. Moreover, special thanks to Andrew Moore
for answering questions about data-structures for fast
implementations and Katherine Heller for sharing data.

References

[1] H. Attias. A variational bayesian framework for graph-
ical models. In Neural Information Processing Systems
12, 2000.

[2] David Eppstein. Fast hierarchical clustering and other
applications of dynamic closest pairs. In SODA: ACM-
SIAM Symposium on Discrete Algorithms, 1998.

[3] Z. Ghahramani and M. J. Beal. Variational inference
for Bayesian mixtures of factor analysers. In Neural
Information Processing Systems, volume 12, 2000.

[4] G. Hamerly and C. Elkan. Learning the k in k-means.
In Neural Information Processing Systems, volume 17,
2003.

[5] K. Heller and Z. Ghahramani. Bayesian hierarchical
clustering. In Twenty-second International Conference
on Machine Learning, 2005.

[6] A. Moore. Very fast EM-based mixture model cluster-
ing using multiresolution kd-trees. In Neural Informa-
tion Processing Systems Conference, 1998.

[7] D. Pelleg and A. Moore. Accelerating exact k-means
algorithms with geometric reasoning. In Proc. of the
5th Int’l Conf. on Knowledge Discovery in Databases,
pages 277–281, 1999.

[8] D. Pelleg and A. Moore. X-means: Extending K-
means with efficient estimation of the number of clus-
ters. In ICML, volume 17, pages 727–734, 2000.

[9] N. Ueda, R. Nakano, Z. Ghahramani, and G.E. Hinton.
SMEM algorithm for mixture models. Neural Compu-
tation, 12(9):2109–2128, 2000.

[10] J. Verbeek, J. Nunnink, and N. Vlassis. Accelerated
variants of the em algorithm for gaussian mixtures.
Technical report, University of Amsterdam, 2003.

[11] T. Zhang, R. Ramakrishnan, and M. Livny. Birch:
An efficient data clustering method for very large
databases. In ACM-SIGMOD Int. Conf. Management
of Data, pages 103–114, 1996.

Table 1: Number of clusters estimated on synthetic data by G-means, K-means+BIC, mixture of Gaussians+BIC, Bayesian
K-means and variational Bayesian learning. Results are averaged over 10 runs of the algorithm. True number of clusters
is 10.

τ N D G-means k-means+BIC MoG+BIC BKM VBMG

0.1 100 2 4.50±2.42 2.00±1.41 3.80±2.04 2.00±0.82 4.30±2.16
32 7.40±3.86 1.00±0.00 1.70±0.48 2.50±4.74 1.00±0.00
64 13.10±5.47 1.00±0.00 1.00±0.00 13.30±1.06 1.30±0.48

1000 2 32.10±12.33 3.50±1.90 7.80±1.32 7.40±1.96 8.80±0.79
32 39.10±10.07 1.10±0.32 5.60±1.65 7.70±1.16 9.90±0.32
64 49.40±22.51 1.00±0.00 3.60±1.43 5.70±4.79 2.90±0.74

5000 2 108.90±15.07 3.80±1.62 9.20±2.70 8.10±4.72 9.90±0.32
32 130.90±46.17 2.70±1.49 3.90±2.64 10.00±0.00 9.80±0.42
64 104.30±51.93 1.30±0.67 2.10±0.32 10.00±0.00 10.00±0.00

0.5 100 2 4.80±2.49 2.50±1.72 5.20±2.35 4.10±3.60 4.40±2.12
32 7.40±4.06 1.00±0.00 2.00±0.00 14.80±5.35 1.00±0.00
64 10.60±6.55 1.00±0.00 1.00±0.00 13.80±0.92 1.40±0.52

1000 2 21.30±4.55 4.20±1.87 9.20±1.32 4.30±3.65 9.40±0.84
32 25.60±10.31 1.20±0.42 9.20±0.63 9.20±2.10 9.90±0.31
64 37.90±9.72 1.60±1.08 3.80±0.84 11.40±6.15 3.80±1.03

5000 2 82.00±14.91 4.20±1.32 9.10±2.76 8.10±3.57 9.80±0.42
32 74.00±32.40 2.60±0.97 8.90±1.45 9.90±0.32 10.00±0.00
64 74.30±31.72 2.50±1.72 9.60±0.52 9.70±0.48 9.80±0.42

2 100 2 6.80±3.26 2.10±1.45 6.50±1.96 8.30±1.89 7.20±2.15
32 11.90±1.20 3.30±2.21 2.40±0.00 10.70±5.17 1.00±0.00
64 9.90±3.87 2.20±2.20 1.00±0.00 13.80±0.63 1.00±0.00

1000 2 18.30±5.29 4.30±1.57 9.50±1.65 9.60±1.26 9.80±0.42
32 13.90±2.08 6.80±2.94 7.40±1.90 9.40±1.26 9.00±0.94
64 13.50±3.66 8.60±2.41 3.00±0.67 12.60±3.31 4.00±1.03

5000 2 48.70±14.22 5.30±2.50 9.60±1.58 10.00±0.00 9.40±1.43
32 15.00±5.79 9.50±1.84 7.90±1.10 10.00±0.00 10.00±0.00
64 11.60±2.07 9.90±2.12 8.40±0.97 10.00±0.00 10.00±0.00

Table 2: Dendrogram purities on some digits datasets for various agglomerative clustering algorithms.

Data Set ABC Single Linkage Complete Linkage Average Linkage

Pendigits 0.701±0.085 0.691±0.055 0.653±0.055 0.707±0.054
CEDAR 0.424±0.069 0.297±0.051 0.402±0.055 0.403±0.039
MNIST 0.207±0.038 0.182±0.017 0.198±0.025 0.199±0.026
3 digits 0.487±0.031 0.395±0.021 0.411±0.020 0.407±0.027

 70

 20
 10
 0

 80 40 20 10

datapoints in thousands

 10

 5

 0
 256 64 16 4

dimensions

 20
 15
 10
 5
 0

 7 6 5 4 3 2 1

tau

 2.5

 2

 1.5

 1
 6.4 3.2 1.6 0.8

datapoints in thousands

Figure 2: Speedup factors using fast data-structures. Three top figures show speedup factors for kd-trees with varying
N , D and τ . The right bottom figure shows results for Conga-Lines. Here, × and ∗ denote overall speedup factor and
speedup factor per iteration respectively.

